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Abstract

An extension of the virial theorem in the Born–Oppenheimer framework is presented, which is valid for arbitrary (not necessarily
variational) wave functions built up by using finite local one-electron basis sets. It permits to define explicitly the terms causing deviations
from the ‘ideal’ virial ratio; the standard formulations of the virial theorem can also be obtained from it as special cases.
� 2007 Elsevier B.V. All rights reserved.

1. Introduction

The virial theorem is one of the general results of large
conceptual importance which are, however, difficult to
apply in practical applications because the conditions of
their fulfillment are too strict to be easily satisfied. In addi-
tion, within the framework of the commonly used Born–
Oppenheimer approximation the classical form of the virial
theorem for Coulombic systems

2T þ V ¼ 0 ð1Þ

is valid only in the stationary points of the potential sur-
face. In (1) T is the expectation value of the kinetic energy
of the electrons and V is that of the total potential energy
of the system (including nuclear–nuclear repulsion). Out-
side the stationary points, one should add an additional
term – Slater [1] identified it the classical virial of the exter-
nal forces keeping the nuclei fixed – thus one has [1,2]

2T þ V þ
X

a

~Ra

oE

o~Ra

¼ 0 ð2Þ

This form of the virial theorem is valid for the exact solu-
tions [3], as well as some sufficiently general variational
wave functions.

As Löwdin pointed out, the fulfillment of these relation-
ships is a necessary (but not sufficient) condition that the
wave function is of high quality [2]. Approximate wave
functions used in everyday practice are usually not fulfilling
these requirements and do not satisfy (1) or (2). This is the
case, because one usually uses atom-centered basis sets,
without independent optimization of the centers and of
the exponents of the individual primitive basis function
(by using floating basis sets and optimized exponents,
one can quickly approach [4] the Hartree–Fock limit, for
which the virial theorem holds). Nonetheless, the ‘virial
ratio’ �V/T is often sufficiently close to two, that the
relationship

E ffi �T ð3Þ

can be used for obtaining a quite meaningful approximate
energy partitioning for molecules at their stationary geom-
etries [5–7].

The aim of the present Letter is to present an exten-
sion of the virial theorem within the Born–Oppenheimer
framework, which is valid for arbitrary (not necessarily
variational) wave functions built up by using finite local
one-electron basis sets. It permits to define explicitly the
terms causing deviations from the ‘ideal’ virial ratio; the
standard formulations of the virial theorem can also be
obtained from it as special cases. An analytical example
and some numerical ones will also be shown to illustrate
the result.
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2. Extension of the virial theorem

Let us consider a molecular system within the frame-
work of the Born–Oppenheimer approximation, described
with an approximate wave function written down by using
a finite basis set1. Neither the wave function nor the basis
functions are required to be fully optimized. The nature
of the wave function needs not to be specified here, e.g.,
it can be that obtained by solving the HFR equations,
but also a correlated one. A given electronic wave function
W of the system depends on the electronic coordinates f~rig
as independent variables, as well as on the following
parameters: positions of the centers of the basis functions
f~P qg which may, or may not, coincide with either of the
nuclei, and the scaling factors {fj} of the (primitive) basis
orbitals (as the positions of the centers are treated indepen-
dently, the nuclear coordinates do not represent explicit
parameters of the wave function). The scaling factors are
understood in the sense, that each (primitive) basis func-
tion vð~riÞ contains terms of structure fj~riq ¼ fjð~ri �~P qÞ; this
means that fj can be an exponent of a Slater-function or the
square root of an exponent of a Gaussian function. There
are, of course, also different constants like contraction
coefficients, orbital expansion coefficients, CI coefficients
or CCA amplitudes which determine the functional form
of the given wave function; they need not be considered
explicitly, but are included in the notion of the ‘given’
electronic wave function. Thus the energy of the system
described with the given wave function will be considered
as depending explicitly on the parameters f~Rag, f~P qg and
{fj}.

Let us now consider a uniform scaling of the system,
e.g., compression of it along all spatial directions. It is to
be stressed that in this case one has to treat the independent
variables (electronic coordinates~ri) of the wave function W

and its parameters (nuclear coordinates ~Ra, centers ~P q and
scaling factors fj of the basis functions) in a conceptually
different manner. In fact, the usual scaling transformation
in which one replaces the electronic coordinates ~ri in the
arguments of W by the scaled ~qi ¼ g~ri corresponds to
stretching the vectors of independent variables; if g > 1,
that leads not to expansion but to compression of the
system: for instance, a given maximum or minimum of
jWj2 will be reached at a smaller ~ri ¼~qi=g value. Accord-
ingly, in order to scale (compress) the system without dis-
torting it, one has to reduce in the same proportion the
vectors ~Ra and ~P q describing the positions of the nuclei
and of the centers of the basis orbitals, respectively, i.e.,
change them to ~Ra=g and ~P q=g and stress the individual
~riq-s separately, by replacing them with ~qiq ¼ g~riq; the
scalars {fj} should be left unchanged. We assume that the
normalization of the wave function is kept unchanged

during the compression (the above considerations are in
agreement with the remark made in Ref. [8]: ‘a particular
scaling of the wave function is transferred to an equivalent
inverse scaling of the operator’).

The effect of scaling on different quantities in the
framework of the Born–Oppenheimer separation has been
discussed by Löwdin [2] (also see, e.g., [9]). In our case – as
we distinguish between the centers of the basis orbitals ~P q

and the positions of the nuclei ~Ra – his equations can be
written as

T ðg;~P Þ ¼ g2T ð1; g~P Þ

V ðg;~P ;~RÞ ¼ gV ð1; g~P ; g~RÞ
ð4Þ

here the first arguments correspond to the scaling coeffi-
cients of the electronic coordinates, the second and third
ones stay for all the positions of the basis orbitals and of
nuclei, respectively2.

Applying these equations to the geometric parameters
~P 0

q ¼
~P q=g; ~R

0
a ¼

~Ra=g, and omitting the primes, we may
also write

T ðg;~P=gÞ ¼ g2T ð1;~P Þ

V ðg;~P=g;~R=gÞ ¼ gV ð1;~P ;~RÞ
ð5Þ

These results can be compactly written as

T ðgÞ ¼ g2T ð1Þ ð6Þ

and

V ðgÞ ¼ gV ð1Þ ð7Þ

where T(1), V(1) are the values of the kinetic and potential
energy before the uniform scaling (i.e. corresponding to the
value g = 1)3.

These results agree with the behaviour predicted by the
general theory [3,10] for the change of the kinetic and
potential energy (Coulombic systems) under uniform scal-
ing, if the normalization of the wave function is kept
unchanged; they are direct consequences of the fact that
both the kinetic and the potential energy are homogeneous
functions of the coordinates (of the order �2 and �1,
respectively). It is easy to see that in our case Eq. (6) indeed
applies for the kinetic energy of the electrons and Eq. (7) to
all the potential energy components, as we have performed
a uniform scaling (compression) of the overall system by a
factor of g. According to Eqs. (6) and (7), the total
electronic energy (including the nuclear repulsion) as
function of g becomes in the case of uniform scaling
(compression)

EðgÞ ¼ g2T ð1Þ þ gV ð1Þ ð8Þ

1 Our considerations are not necessarily valid for some less conventional

basis functions as multicenter ones or plane waves, or for wave functions

containing the interelectronic distances explicitly (we are grateful to a

Referee for calling attention to this point).

2 The kinetic energy of electrons does not explicitly depend on the

positions of the nuclei, so they are not indicated in its expression.
3 Eqs. (6), (7) also show that the scaling transformation with g > 1

corresponds to a compression (and not to an extension) of the system:

both the kinetic and the potential energies increase in absolute value.
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Accordingly, we have for the derivative of the energy in
the point g = 1

dE

dg

�

�

�

�

g¼1

¼ 2T þ V ð9Þ

with T = T(1) and V = V(1).
Now, we do not assume the fulfillment of any varia-

tional criterion for the wave function considered and do
not require this derivative to vanish; instead, we shall deter-
mine it in a different manner, too.

We consider an infinitesimal compression with parameter
g = 1 + dg. The vectors~Ra and~P q change to~Ra=g and ~P q=g,
respectively, which means that their differentials are
d~Ra ¼ �~Radg and d~P q ¼ �~P qdg and their derivatives

d~Ra

dg
¼ �~Ra;

d~P q

dg
¼ �~P q ð10Þ

The scaling of the vectors~riq results in replacing the prod-
ucts fj~riq with fjð1þ dgÞ~riq which is equivalent to changing
all the scaling factors fj with dfj = dgfj, or

dfj
dg

¼ fj ð11Þ

Then the full derivative of the energy according to g will be
(we consider point g = 1):

dE

dg

�

�

�

�

g¼1

¼
X

a

oE

o~Ra

ð�~RaÞ þ
X

q

oE

o~P q

ð�~P qÞ þ
X

j

oE

ofj
fj ð12Þ

Comparing Eqs. (9) and (12) and bringing all terms to
the same side, we get

2T þ V þ
X

a

~Ra

oE

o~Ra

�

�

�

�

HF

þ
X

q

~P q

oE

o~P q

�
X

j

fj
oE

ofj
¼ 0 ð13Þ

It is to be stressed that Eq. (13) is valid without assum-
ing that the wave function has been subjected to any
optimization. The first three terms are the ‘physical’ ones
in the sense that they are also present for an exact wave
function, while the other two become zero if a complete
optimization of the wave function has been made. The dif-
ferent known versions of the virial theorem can be obtained
from expression Eq. (13) by requesting the wave function
to fulfill some requirements.

First of all, we should mention that the derivative oE

o~Ra
jHF

on the left-hand-side of (13) represents the Hellmann–
Feynman force, because only the electron-nuclear and the
nuclear–nuclear energy terms of the Hamiltonian depend
explicitly on the nuclear positions. This is indicated by
the subscript ‘HF’. However, if the basis orbitals are
centered on the nuclei and ‘orbital following’ is assumed,
then the positions of the basis orbitals move together with
the nuclei and the sum of the first two derivative terms
gives the full gradient of the energy for a fixed functional
form of the wave function (e.g., fixed orbital coefficients),
and we have

2T þ V þ
X

a

~Ra

oE

o~Ra

�

�

�

�

�

C

�
X

j

fj
oE

ofj
¼ 0 ð14Þ

where oE

o~Ra
jC is now pertinent to the total energy as function

of the atomic positions ~Ra and subscript ‘C’ indicates that
we assume fixed wave function parameters (orbital coeffi-
cients etc.). The same result is obtained if the position of
every basis orbital is optimized and all oE

o~P q
¼ 0: Of course,

for a variational wave function the ‘true’ gradient of the
energy coincides with the gradient of the energy for a fixed
functional form of the wave function, as small variations of
the latter do not change the variational energy and the sub-
script ‘C’ may be omitted.

It follows from (14) that the generally used variant of
the virial theorem for the Born–Oppenheimer separation

2T þ V þ
X

a

~Ra

oE

o~Ra

¼ 0 ð15Þ

is obtained assuming that we use a variational wave func-
tion and the scaling factors fj were also optimized. Eq.
(15) reduces to the simplest version of the virial theorem

2T þ V ¼ 0 ð16Þ

in the stationary points of the potential surface. This also
means that the deviation from the equality 2T + V = 0 in
stationary points measures the degree to which the basis
exponents are lacking optimization (if we are dealing with
classical basis set expansions, like in the HFR method, then
this deviation can be considered also as measuring the
incompleteness of the basis set, as an optimized expansion
in a complete basis does not need exponent optimization).

3. Examples

3.1. An example of a H atom with an off-centered Slater

orbital

Let us consider a proton at the origin (for simplicity)
and an electron occupying a Slater 1s orbital with exponent
a at the distance R. According to the formulae in Slater’s
book [10], one has (taking into account that Slater used
Rydberg units instead of Hartrees, which means that all
his results should be divided by two if we want to use
Hartrees):

T ¼
a2

2
ð17Þ

and

V ¼ a �
1

w
þ e�2w 1þ

1

w

� �� �

¼ �
1

R
þ e�2aR aþ

1

R

� �

ð18Þ

where the definition w = aR has been taken into account.
Comparing with the notations used above, we have the
correspondence Ra = 0, Pq = R and fj = a – in this simple
problem there is no need to explicitly consider vector
variables.
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According to Eqs. (17), (18), we have for the derivatives
of E = T + V the expressions

oE

oR
¼

1

R2
� 2ae�2aR aþ

1

R

� �

�
e�2aR

R2
ð19Þ

and

oE

oa
¼ a� 2Re�2aR aþ

1

R

� �

þ e�2aR ð20Þ

Thus we have

2T þ V þ R
oE

oR
� a

oE

oa
¼ a2 �

1

R
þ e�2aR aþ

1

R

� �

þ
1

R
� 2Rae�2aR aþ

1

R

� �

�
e�2aR

R
� a2

þ 2aRe�2aR aþ
1

R

� �

� ae�2aR ¼ 0 ð21Þ

in full agreement with Eq. (13)

3.2. LCAO model calculations

Dividing Eq. (13) by T and introducing the shorthand
notations

DR ¼
X

a

~Ra

oE

o~Ra

�

�

�

�

HF

; DP ¼
X

q

~P q

oE

o~P q

; DZ ¼ �
X

j

fj
oE

ofj

ð22Þ

it can be rewritten as

2þ ðV þ DRþ DP þ DZÞ=T ¼ 0 ð23Þ

Eq. (23) indicates that the quantity (DR + DP + DZ)/T
measures the deviation of the ratio V/T from its ‘classical’
value of V/T = �2.

We are going here to show some HFR results for
two simple molecules, CO and NH3 treated by using the
standard 6-31G* basis set. For CO we have studied the
behaviour of different quantities along the potential curve,
while for NH3 the inversion of the molecule has been con-
sidered by keeping fixed the N–H distances. The deriva-
tions with respect of centers and exponents of basis
functions have been performed by using the technique
developed in Ref. [4].

Fig. 1 collects different results for the CO molecule.
Fig. 1a shows that for the given selection of the origin
(the carbon nucleus) the components of the virial DR and

Fig. 1. (a) The quantities DR, DP defined in Eq. (22) and their sum as

functions of the interatomic distance of the CO molecule (6-31G* HFR

calculations); (b) the quantity DZ defined in Eq. (22) as function of the

interatomic distance of the CO molecule; (c) the different contributions at

the left-hand-side of Eq. (23) and their sum as functions of the interatomic

distance of the CO molecule.

Fig. 2. Potential curve of the NH3 molecule along the inversion

coordinate using fixed N–H distances (6-31G* HFR calculations).
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DP are of opposite sign; their sum crosses the zero level
exactly at the equilibrium distance of 2.1047 bohr indicated
by an arrow on the ordinate axis, as in this case this sum is
the virial of the conventional gradient (this is also reflected
on the respective curve on Fig. 1c.). The quantity DZ,
shown on Fig. 1b, changes smoothly with the interatomic

distance, exhibiting a minimum at a distance significantly
larger than the equilibrium one.

Fig. 1c displays the different terms contributing to the
left-hand-side of Eq. (23), and the sum of all the terms at
the left-hand-side, which was always found to equal zero
with the full machine accuracy (ca. 14 decimal digits) at
all distances. One can see that at the equilibrium distance,
where DR + DP = 0, the deviation of the actual value
T/V = �2.00241 from the ideal value of �2 is just due to
the term DZ.

Fig. 2 displays the potential curve of the NH3 molecule
along the inversion coordinate (angle between the three-
fold axis and the N–H bonds) at a fixed value of 1 Å of
the N–H distances. It exhibits a maximum at the planar
conformation (q = 90�), and two minima at the angles
q = 68.42� and 111.58�. As the bond lengths have not been
optimized, the forces are not zero and their virial need not
to vanish even at the stationary point of this potential
curve.

Fig. 3 displays the same quantities for NH3 as shown on
Fig. 1 for CO (the positions of the energy minima are again
indicated by arrows on the ordinate axis). As the origin has
been kept on one side from the molecule throughout the
calculations (on the three-fold axis, at a distance of 1 Å
from the nitrogen atom), the curves of the origin-depen-
dent quantities DR and DP are not symmetric with respect
of the planar geometry; their sum, representing the virial of
the true gradient is, of course, origin-independent and
symmetric. The curve DZ (Fig. 2b) is symmetric and exhib-
its a maximum at the planar configuration.

Fig. 3c displays the different terms at the left-hand-side
of Eq. (23) for the NH3 molecule. Contrary to the CO case
discussed above, the contribution coming from the total
gradient does not vanish even at the minima or at the
maximum of the energy curve: as the bond lengths have
not been optimized, these points are not true stationary
points of the whole potential surface. The sum of all terms
of Eq. (23) again has been found zero with the full machine
accuracy.

4. Conclusions

An extension of the virial theorem in the Born–Oppen-
heimer framework is presented, which is valid for arbitrary
(not necessarily variational) wave functions built up by
using finite local one-electron basis sets. It permits to define
explicitly the terms causing deviations from the ‘ideal’ virial
ratio; the standard formulations of the virial theorem
can also be obtained from it as special cases. The results
are illustrated by an analytical and some numerical
examples.
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Fig. 3. (a) The quantities DR, DP defined in Eq. (22) and their sum as

functions of the inversion coordinate of the NH3 molecule (6-31G* HFR

calculations); (b) the quantity DZ defined in Eq. (22) as function of the

inversion coordinate of the NH3 molecule; (c) the different contributions

at the left-hand-side of Eq. (23) and their sum as functions of the inversion

coordinate of the NH3 molecule.
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